
PRIVACY PRESERVING DATA SHARING [1] 

  

  

PRIVACY PRESERVING DATA SHARING 

Picture: Courtesy of Merlin Lightpain7ng 

 

  



PRIVACY PRESERVING DATA SHARING [2] 

 

A NEW ERA OF DATA SHARING WITHOUT THE 
RISKS INHERENT IN SHARING DATA 
Cutting edge technologies will unlock the, as yet, unrealised value of data. 
Providing safeguards for AI and quantum computing, for the good of 
humankind, like never before 
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Background 

Data is a vital resource for solving society’s biggest problems. Today, significant amounts of 

data are accumulated everyday fuelled by widespread data genera0on methods, new data 

collec0on technologies, faster means of communica0on, and more accessible cloud storage. 

Advances in compu0ng have significantly reduced the cost of data analy0cs and ar0ficial 

intelligence, making it even easier to use this data to derive valuable insights and enable 

new possibili0es. However, this poten0al is oZen limited by legal, policy, technical, 

socioeconomic, and ethical challenges involved in sharing and analysing sensi0ve 

informa0on. These opportuni0es can only be fully realized if strong safeguards that protect 

privacy are in place which is seen as a fundamental right in democra0c socie0es. 

Privacy-preserving data sharing and 

analy0cs (PPDSA) methods and 

technologies can unlock the 

beneficial power of data analysis 

while protec0ng privacy. Using 

privacy enhancing technologies 

(PETs), PPDSA solu0ons include 

methodological, technical, and 

sociotechnical approaches that 

employ privacy-enhancing 

technologies to derive value from, 

and enable an analysis of, data to 

drive innova0on while also providing privacy and security. However, adop0on of PPDSA 

technologies has been slow because of challenges related to inadequate understanding of 

privacy risks and harms, limited access to technical exper0se, trust, transparency among 

par0cipants with regard to data collec0on and use, uncertainty about legal compliance, 

financial cost, and the usability and technical maturity of solu0ons. 

  

 

Almost 70% of enterprises are able to classify 

only 50% or less of their sensi7ve data 

Thales 2024 Data Threat Report, Global Edition 
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PPDSA technologies have enormous poten0al, but their benefit is 0ed to how they are 

developed and used. Exis0ng confiden0ality and privacy laws and policies provide important 

protec0ons to individuals and communi0es, and a^en0on is needed to determine how to 

uphold these protec0ons using PPDSA technologies and maintain commitments to equity, 

transparency, and accountability. Considera0on of how individuals may control the 

collec0on, linking, and use of their data should also factor into the design and use of PPDSA 

technologies.

          The impera7ve for PETs 

With their ability to protect individual privacy and to eliminate 

the risk of data breach and depreca0on of IP, Privacy Enhancing 

Technologies are cri0cal in enabling organiza0ons to leverage the 

deluge of data accessible to them. The ques0on isn't whether 

they should adopt them, but rather, can they afford not to? 

WORLD ECONOMIC FORUM 

“ 
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Introduc1on 

Data drives scien7fic and technological 

breakthroughs, underpin policymaking, 

and power the global economy. Clinicians 

use data to iden0fy the best treatments 

for their pa0ents, farmers use data to 

predict and improve farm yields, 

researchers use data to generate new 

knowledge about natural and social 

phenomena, and public servants use data 

to create evidence-based policies. 

Ar0ficial Intelligence (AI) and other 

emerging analy0cs techniques are 

amplifying the power of data, making it 

easier to discover new pa^erns and 

insights ranging from be^er predic0on 

models to understand and mi0gate the 

impacts of climate change to new 

methods for detec0ng financial crime. 

Although data enable science, innova0on, 

and insights, balancing the benefits of 

these data-derived insights with the 

impera0ves of privacy, security, and other 

values is a longstanding challenge. For 

example, when developing new treatment 

op0ons, medical researchers may benefit 

from broad access to electronic health 

records. However, those records may 

contain personal health informa0on 

related to individual pa0ents, 

compromising the privacy and safety of 

those pa0ents as well as rights under 

health privacy laws and regula0ons on the 

protec0on of human subjects. Similarly, 

when researchers access authorized data 

without safeguards on how they access 

the data, privacy-sensi0ve informa0on 

such as their loca0on or the specific type 

of informa0on they are accessing may be 

revealed. In many domains, collabora0ons 

that could improve AI model training and 

accelerate progress must be balanced with 

ethical and legal privacy concerns and 

intellectual property protec0on concerns. 

Privacy-preserving data sharing and 

analy7cs (PPDSA) solu7ons include 

technical and sociotechnical approaches 

that employ certain types of privacy-

enhancing technologies (PETs). This 

generates value from, and enable, 

analy0cs on data while protec0ng privacy 

and security. Some PPDSA approaches 

allow users (e.g., researchers and 

physicians) to gain insights from sensi0ve 

data without exposing the original data 

itself or allow them to access shared data 

without being tracked or iden0fied. Other 

PPDSA approaches enable data sharing by 

obscuring personal data or making 
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synthe0c reflec0ons of the original data 

that preserve the proper0es of interest in 

the data while protec0ng individual 

privacy. 

The ever-growing volume of data 

presents both opportuni7es and 

challenges. Collabora0ve data analysis 

across ins0tu0ons holds immense 

poten0al for scien0fic discovery, business 

innova0on, and improved public services. 

However, sharing sensi0ve data oZen 

raises privacy concerns. This paper delves 

into the concept of secure and privacy-

preserving data sharing, exploring four key 

cryptographic techniques that empower 

this approach: Homomorphic Encryp0on, 

Differen0al Privacy, Mul0-Party 

Computa0on (MPC), and Confiden0al 

Compu0ng. 
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Homomorphic Encryp1on: Secure Computa1ons 

on Encrypted Data 

Homomorphic Encryp0on (HE) allows computa0ons to be performed directly on encrypted 

data. Data is transformed into a ciphertext, and computa0ons are carried out on this 

ciphertext. The result, also in ciphertext form, can be decrypted to reveal the outcome of 

the computa0on without ever decryp0ng the original data. This is akin to performing 

calcula0ons on a locked box containing the data, with the result being the only informa0on 

revealed. It ensures sensi0ve informa0on remains confiden0al while enabling valuable 

insights to be extracted. 

 

HE comes in various flavours, each offering different capabili9es and trade-offs.  

  

 

 

 

 

Encryp0on and Decryp0on: HE schemes involve a public key for encryp0on and a private key 

for decryp0on. Anyone can encrypt data using the public key, but only the authorized party 

with the private key can decrypt the result. 

Homomorphic Opera0ons: HE enables performing specific mathema0cal opera0ons on 

encrypted data and obtaining the encrypted result. For example, adding encrypted numbers 

results in the encryp0on of their sum, and mul0plying encrypted numbers results in the 

encryp0on of their product. 
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Par$ally Homomorphic Encryp$on 
Supports either addi.on or mul.plica.on homomorphically (e.g., Paillier cryptosystem) 

Somewhat Homomorphic Encryp$on 
Supports a limited number of addi.ons and mul.plica.ons on encrypted data (e.g., BGN cryptosystem) 

Fully Homomorphic Encryp$on 
Supports an unlimited number of addi.ons and mul.plica.ons on encrypted data (e.g., Gentry's scheme). 
The computa.onal complexity of FHE is significantly higher than other HE types 

Technical Specifics 
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Figure 1 The proposed architecture to secure data using homomorphic encryption 

 

 

Homomorphic encryp9on empowers various secure data sharing scenarios: 

 

 

 

 

 

 

 

 

Medical Research: Collabora.vely analyse pa.ent 

data for research purposes without compromising 

individual privacy. Encrypted medical records can be 

analysed to iden.fy paIerns and trends while 

protec.ng sensi.ve pa.ent informa.on. 

 

Financial Analysis: Conduct secure financial analysis 

on encrypted financial data. Banks or financial 

ins.tu.ons can share encrypted financial data with 

analysts for risk assessment or fraud detec.on 

without revealing sensi.ve details. 

 

Cloud-based Data Analysis: Upload and analyse 

sensi.ve data on cloud plaLorms without 

decryp.on. Businesses can leverage the scalability 

of cloud compu.ng for data analysis while ensuring 

data confiden.ality. 

Government Data Sharing: Share sensi.ve 

government data for collabora.ve inves.ga.ons 

or sta.s.cal analysis while maintaining individual 

privacy. Encrypted census data or crime sta.s.cs 

can be analysed without revealing details of 

specific individuals. 

 

Use Cases in Secure Data Sharing 
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Conclusion 

Homomorphic encryp0on offers a promising approach for secure and privacy-preserving 

data sharing. While technical challenges remain, advancements in op0miza0on and new 

research direc0ons hold promise for a future where HE empowers secure data collabora0on 

across various sectors. As HE con0nues to evolve, it has the poten0al to revolu0onize how 

we share and analyse sensi0ve data, fostering innova0on while safeguarding privacy. 

  

Computa0onal 

Complexity 

Challenges Advancements 

 

Despite its poten9al, Homomorphic encryp9on faces some technical challenges 

 

Homomorphic 
computa0ons can be 
computa0onally 
expensive, leading to 
slower processing 0mes 
compared to tradi0onal 
methods. 

 

Research focuses on 
op0mizing HE schemes and 
u0lizing specialized 
hardware accelerators to 
improve performance. 

Bootstrapping 

In SWHE schemes, the 
number of 
homomorphic 
opera0ons is limited. A 
process called 
bootstrapping refreshes 
the ciphertext to allow 
further computa0ons, 
but it can be 
computa0onally 
expensive. 

New bootstrapping 
techniques are being 
developed to reduce the 
computa0onal overhead 
associated with this process. 

Limited 

Func0onality 

Current FHE schemes 
might not support all 
desired opera0ons or 
data types. 

Ongoing research explores 
expanding the capabili0es 
of FHE schemes to handle 
more complex computa0ons 
and data structures. 

Technical Challenges and Advancements 
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Differen1al Privacy: Balancing U1lity and Privacy in 

Data Sharing 

Differen0al privacy (DP) is a powerful technique for sharing sta0s0cal informa0on about 

datasets while protec0ng the privacy of individual records. It achieves this balance by 

carefully injec0ng controlled noise into the data before sharing it. 

 

Differen9al privacy offers a mathema9cal framework that guarantees a level of 

privacy for individuals in a dataset. Here's how it works: 

Privacy Guarantee: DP ensures that an observer cannot tell whether a specific individual's 

data was included in the dataset or not, by analysing the released informa0on. The privacy 

guarantee is quan0fied by two parameters: epsilon (ε) and delta (δ). Lower values of ε and δ 

indicate stronger privacy guarantees. 

Noise Injec7on: DP algorithms inject noise into the data, such as adding or subtrac0ng 

random values from sta0s0cal counts. This noise masks the contribu0on of any individual 

record, making it difficult to infer informa0on about specific individuals. 

Mechanisms: Several DP mechanisms can be used to achieve differen0al privacy, such as the 

Laplace mechanism and the exponen0al mechanism. These mechanisms introduce noise in 

different ways to achieve the desired level of privacy and data u0lity. 

 

 

02 

Share user data with adver0sers in a privacy-preserving manner. DP 
ensures user profiles remain confiden0al while enabling targeted 

adver0sing campaigns based on aggregated user behaviour. 

Technical Specifics 
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Figure 2 Working Methodology for Differential Privacy 

 

 

Examples of how differen9al privacy empowers data sharing: 

 

 

 

 

 

 

 

 

 

Medical Research: Analyse anonymized medical 

records for research purposes without 

compromising pa.ent iden..es. DP allows 

researchers to extract valuable insights from large 

datasets while protec.ng individual pa.ent 

informa.on. 

Publishing Census Data: Release aggregated 

sta.s.cs about a popula.on while protec.ng 

individual privacy. DP ensures that demographic 

informa.on remains confiden.al, even for small 

popula.ons. 

 

Targeted Adver$sing: Share user data with 

adver.sers in a privacy-preserving manner. DP 

ensures user profiles remain confiden.al while 

enabling targeted adver.sing campaigns based 

on aggregated user behaviour. 

Machine Learning with Sensi$ve Data: Train 

machine learning models on sensi.ve data 

while protec.ng individual records. DP helps 

ensure the model learns from broader paIerns 

without revealing details about specific data 

points used for training. 

 

Use Cases in Secure Data Sharing 
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Conclusion 

Differen0al privacy provides a valuable approach for secure data sharing by enabling the 

release of sta0s0cal insights without compromising individual privacy. While challenges exist 

in balancing privacy and u0lity, ongoing research efforts aim to improve DP techniques and 

address its limita0ons. By fostering innova0on in DP algorithms and addressing the trade-

offs involved, this technique holds immense poten0al for a future where data sharing 

benefits society while upholding individual privacy rights. 

  

 

Differen9al Privacy offers many benefits but faces some technical challenges: 

Privacy-U0lity 

Trade-off 

Challenges Advancements 

Adding more noise to 
achieve stronger 
privacy guarantees can 
also reduce the 
accuracy and 
usefulness of the data 
(u0lity). 

Researchers are 
exploring new DP 
mechanisms and 
algorithms that offer 
be^er trade-offs 
between privacy and 
u0lity. Composi0on 
theorems are being 
developed to handle the 
composi0on problem 
while minimizing noise 
accumula0on. Synthe0c 
data genera0on 
techniques are being 
inves0gated to create 
realis0c anonymized 
datasets that can be 
used in conjunc0on with 
DP for small datasets. 

Composi0on 

Problem 

Combining mul0ple 
differen0ally private 
opera0ons can amplify 
the noise and 
significantly reduce data 
u0lity. 

Data U0lity for 

Small Datasets 

DP can be less effec0ve 
for very small datasets 
as the noise injec0on 
can significantly distort 
the underlying data. 

Technical Challenges and Advancements 
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Mul1-Party Computa1on: Collabora1ve Analysis 

Without Sharing Data 

Mul0-party computa0on (MPC) empowers mul0ple par0es to jointly compute a func0on on 

their private data inputs without revealing those inputs to each other. 

Imagine several par0es holding pieces of a puzzle; through MPC, they can collec0vely solve 

the puzzle without revealing their individual pieces. This fosters secure data collabora0on 

while ensuring each party retains control over its own sensi0ve data. 

 
 

MPC relies on complex cryptographic protocols that allow secure communica9on 

and computa9on between par9es without revealing the underlying data.  

Here's a breakdown of the key concepts: 

Secret Sharing: Data is divided into secret shares and distributed among the par0cipa0ng 

par0es. No single party possesses the complete data; only by combining their shares can 

they reconstruct the final result. 

Garbled Circuits: In this approach, the func0on to be computed is transformed into a 

garbled circuit. Each gate in the circuit is replaced with a set of encrypted instruc0ons. 

Par0es evaluate these instruc0ons based on their secret shares without revealing the actual 

data. 

Secure Comparison: MPC protocols oZen involve secure comparison techniques that allow 

par0es to compare their inputs without revealing the actual values. This is crucial for 

func0onali0es like joint risk assessment or collabora0ve filtering. 

03 

Technical Specifics 
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Figure 3 Secure Multi-Party Computation 

 

 

MPC enables secure collabora9on in various scenarios: 

 

 

 

 

 

 

 

 

 

Use Cases in Secure Data Sharing 

 

Fraud Detec$on: Credit card companies can 

combine data to iden.fy fraudulent transac.ons 

without revealing individual customer details. 

Collabora.ve analysis helps iden.fy paIerns and 

prevent fraud more effec.vely. 

Financial Analysis: Financial Analysis: Banks can 

jointly assess creditworthiness of loan applicants 

without sharing individual customer data. This 

fosters collabora.on while protec.ng sensi.ve 

financial informa.on. 

 

Scien$fic Research: Researchers from different 

ins.tu.ons can analyse sensi.ve data sets (e.g., 

genomic data) for joint research projects without 

sharing the raw data. This allows for scien.fic 

advancements while protec.ng par.cipant privacy. 

Joint Auc$ons: Bidding companies can 

par.cipate in secure auc.ons without revealing 

their individual bidding strategies. MPC ensures 

fair compe..on while protec.ng sensi.ve 

pricing informa.on. 
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Conclusion 

Mul0-party computa0on offers a powerful approach for secure data collabora0on. It allows 

various par0es to share insights without compromising their sensi0ve data. While challenges 

remain in terms of efficiency and scalability, ongoing research holds promise for a future 

where MPC becomes a prac0cal tool for secure and privacy-preserving data sharing across 

diverse applica0ons. By overcoming these challenges, MPC can empower collabora0ve data 

analysis and unlock new possibili0es for innova0on in various sectors.  

Technical Challenges and Advancements 

 

 

Despite its poten0al, MPC faces some technical hurdles: 

Computa0onal 

Complexity 

Challenges` Advancements 

MPC computa0ons can 
be computa0onally 
expensive, especially for 
complex func0ons and 
large datasets. This can 
impact the efficiency and 
scalability of the 
protocol. 

Researchers are 
ac0vely exploring new 
protocols and 
techniques to improve 
the efficiency and 
scalability of MPC. This 
includes u0lizing 
hardware accelerators 
and op0mizing 
communica0on 
channels. Addi0onally, 
research is ongoing into 
minimizing the reliance 
on trusted par0es in 
MPC protocols. 

Trusted Par0es 

Some MPC protocols rely 
on trusted par0es to 
facilitate communica0on 
and ensure protocol 
execu0on. This introduces 
a poten0al trust 
dependency. 

Scalability 

Scaling MPC to a large 
number of par0cipants 
can be challenging due to 
increased 
communica0on overhead 
and computa0onal 
complexity. 
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Federated Learning: Secure and Private Data 

Sharing for Machine Learning 

Federated learning is a machine learning approach that enables collabora0ve training of 

models without directly sharing the underlying data. This is par0cularly beneficial when 

dealing with sensi0ve data where privacy is a major concern. 

 

Distributed Training: Data remains on individual devices or servers (called clients) where 

local models are trained. 

Model Updates: Clients only share model updates (changes in weights and biases) with a 

central server (coordinator). These updates contain no raw data. 

Aggrega7on: The coordinator aggregates the received updates to improve a global model. 

Privacy-Preserving Techniques: Techniques like differen0al privacy can be used to add noise 

to the updates, further protec0ng individual contribu0ons. 

 

Figure 4 Basic Federated Learning Architecture 
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Technical Specifics 
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Federated learning use cases include:- 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Federated learning is a rapidly evolving field with ongoing research to address these 

challenges and improve its effec0veness. By enabling collabora0ve learning without 

compromising privacy, it holds significant promise for various applica0ons that rely on 

sensi0ve data. 

Use Cases in Secure Data Sharing 

 

Financial Fraud Detec$on: Banks 

can collabora.vely build fraud 

detec.on models without 

revealing individual customer 

transac.ons. 

Mobile Keyboard Predic$on: 

Smartphone keyboards can learn 

personalized sugges.ons by 

federated learning on user typing 

data stored on the devices. 

Medical Diagnosis: Hospitals can 

train a disease predic.on model 

on their pa.ent data without 

sharing the sensi.ve medical 

informa.on itself. 

Technical Challenges and Advancements 

 

Communica0on 

Overhead 

Challenges Advancements 

Frequent communica0on 
of model updates can be 
resource-intensive, 
especially for 
geographically 
distributed clients. 

Non-IID Data 

Clients might have data 
with different 
distribu0ons (non-IID), 
hindering the 
effec0veness of the global 
model. 

Privacy Leakage 

Even with model 
updates, there's a risk of 
inferring sensi0ve 
informa0on through 
reconstruc0on a^acks. 

Efficient Aggrega0on 
Protocols: Techniques, such 
as selec0ve aggrega0on, or 
model averaging, can reduce 
communica0on overhead. 

Federated Transfer Learning: 
Pre-training a base model on 
a diverse dataset helps 
address non-IID data issues. 

Differen0al Privacy with 
Secure Aggrega0on: Adding 
controlled noise to model 
updates combined with 
secure aggrega0on methods 
can further enhance privacy 
protec0on. 
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Federated Learning and Mul9-Party Computa9on together 

Federated learning and mul0-party computa0on (MPC) are complementary techniques that 

can be combined to achieve even stronger privacy guarantees in secure data sharing for 

machine learning. Here's how they work together: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stronger Privacy Guarantees  
MPC offers a higher level of privacy compared to just adding 
noise in federated learning. It protects against poten.al 
reconstruc.on aIacks where an adversary could try to infer 
individual data points from the aggregated model. 

Federated Learning Mul7-Party Computa7on 

Focuses on collabora.ve training 
of models where data remains on 
individual devices (clients). Clients 
share only model updates 
(changes in weights and biases) 
with a central server 
(coordinator). 

Allows mul.ple par.es to 
jointly compute a func.on on 
their private inputs without 
revealing those inputs to 
each other. 

Privacy-Preserving Model Updates 

MPC can be used to perform secure 
computa.ons on the model updates 

exchanged between clients in 
federated learning. This prevents the 
server or any individual client from 

learning the raw updates or inferring 
sensi.ve informa.on from them. 

Combining for enhanced privacy 

Secure Aggrega.on 

MPC protocols can be used to 
securely aggregate the updates from 

mul.ple clients without revealing 
individual contribu.ons. This ensures 

a robust and tamper-proof global 
model. 

Differen.al Privacy with MPC 

Combining differen.al privacy 
(adding noise to model updates) 

with MPC offers addi.onal 
protec.on as both techniques 

independently obfuscate the data. 

BE
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Improved Trust 
By elimina.ng the need for clients to trust the server with 
their updates, MPC fosters a more secure collabora.ve 
environment. 

Scalability  
MPC protocols might not scale efficiently to a large number of clients, limi.ng its 
applicability in certain scenarios. 

Computa$onal Overhead  
MPC computa.ons can be computa.onally expensive, impac.ng training speed, 
especially for complex models. 
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Research Direc+ons: 

• Development of more efficient MPC protocols specifically designed for federated 

learning tasks. 

• Exploring alternative privacy-preserving techniques that can be integrated with 

federated learning. 

Overall, combining federated learning with MPC offers a powerful approach for collabora0ve 

machine learning while ensuring strong privacy guarantees for sensi0ve data. As research 

progresses, these techniques are expected to play a significant role in unlocking the 

poten0al of data sharing in a privacy-conscious manner. 

 
 
 
 
  

Federated Learning Transforming Smart Ci7es 
Federated learning can solve challenges in modern digi.sed transporta.on systems, such as data privacy, calcula.on processing, and 

communica.on delay. Smart city programs are cri.cal infrastructure requiring robust cybersecurity based on privacy enhancing technologies 
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Confiden1al Compu1ng: Secure Enclaves for 

Privacy-Preserving Data Processing 

Confiden0al compu0ng emerges as a game-changer for secure privacy-preserving data 

sharing. It leverages hardware-based security features within processors to create trusted 

execu0on environments (TEEs) where data remains encrypted even during processing. This 

ensures sensi0ve data processing occurs in a secure isola0on layer, safeguarding privacy 

while facilita0ng valuable data analysis. 

 

Confiden9al compu9ng relies on hardware capabili9es within modern processors: 

• Trusted Execution Environments (TEEs): These are isolated execution environments 

within the processor that protect data and code confidentiality even from the main 

operating system and any potential attackers. They provide a secure enclave for 

processing sensitive data. 

• Secure Enclave Management:  Software tools and libraries manage the creation, 

provisioning, and access controls for TEEs. This ensures authorized applications can 

leverage the secure enclave for data processing. 

• Encryption and Decryption: Data is encrypted before entering the TEE and decrypted 

only after processing is complete. End-to-end Data Protection (E2EDP) ensures sensitive 

data remains protected throughout the entire processing lifecycle within the enclave. 

 

 

 

 

 
 

Figure 5 Example Model for Confidential Computing: Thales End-to-end Data Protection  
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Confiden9al compu9ng empowers secure data analysis in various scenarios: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advancements: 

  

Use Cases in Secure Data Sharing 

 

Cloud-based Data Analy$cs: Businesses can leverage 

the scalability of cloud compu.ng for sensi.ve data 

analysis without compromising privacy. Confiden.al 

compu.ng ensures data remains encrypted even on 

shared cloud infrastructure. 

Financial Transac$ons: Enhance security for 

financial transac.ons like clearing and seIlement 

processes. Confiden.al compu.ng protects 

sensi.ve financial data during processing within 

the TEE. 

Supply Chain Management: Securely analyse and 

share sensi.ve supply chain data (e.g., pricing 

informa.on, intellectual property) across collabora.ng 

par.es. Confiden.al compu.ng safeguards data 

confiden.ality during collabora.ve analysis in a TEE. 

Healthcare Data Analysis: Collabora.vely analyses 

encrypted pa.ent data for research purposes while 

maintaining pa.ent privacy. Confiden.al compu.ng 

ensures sensi.ve medical data remains protected 

within the secure enclave. 

                   Technical Challenges and Advancements 

 

Limited 

Adop0on 

Challenges Advancements 

TEE technology is evolving. 
Widespread adop0on 
requires broader hardware 
and soZware support. 
Integra0ng confiden0al 
compu0ng with exis0ng 
applica0ons can be complex. 

Performance 

Overhead 

Processing data within the 
TEE can introduce some 
performance overhead 
compared to tradi0onal 
processing methods. 

SoZware development 
frameworks are being 
developed to simplify 
applica0on integra0on with 
confiden0al compu0ng. 

Processor manufacturers are 
ac0vely improving TEE 
func0onali0es and 
performance. 

Standardiza0on 

Standardizing interfaces 
and APIs for confiden0al 
compu0ng across different 
hardware plajorms is 
crucial for broader adop0on 
and interoperability. 

Industry collabora0on is 
fostering standardiza0on 
efforts to ensure 
compa0bility across 
plajorms. 

Confiden9al compu9ng considera9ons 
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Conclusion 

Confiden0al compu0ng offers a promising approach for secure privacy-preserving data 

processing. By leveraging hardware-based security enclaves, it empowers data collabora0on 

without compromising privacy. While challenges regarding adop0on, performance, and 

standardiza0on remain, ongoing advancements hold significant promise for a future where 

confiden0al compu0ng becomes a cornerstone of secure and privacy-conscious data 

u0liza0on across various sectors. As the technology matures and limita0ons are addressed, 

confiden0al compu0ng has the poten0al to revolu0onize the way we analyse and share 

sensi0ve data, fostering secure collabora0on and innova0on. 

  

Confiden>al Compu>ng used at scale within Central Bank Digital Currency.  
“A CBDC designed on confiden.al compu.ng principles can be as private as cash is today, and s.ll allow 

tracking of aggregate economic trends and preven.ng money-laundering-enabled crime.”  
                                                                                                                                                                    Forbes 2023 
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Digital Assets and Privacy Preserving Technologies 

Digital Asset and specifically CBDC design choices will significantly impact user privacy. Some 

designs concentrate a lot of data, including user iden00es and transac0on details, with the 

central bank. This raises concerns about mass surveillance and poten0al misuse of this data.  

Privacy-preserving technologies hold immense poten0al in the digital asset space, 

addressing cri0cal concerns around user privacy and security without hindering innova0on. 

Here are some key use cases: 

1. Secure Transac9ons: 

Zero-knowledge proofs: Allow users to prove they possess certain digital assets (e.g., 

cryptocurrency) without revealing the exact amount or transac0on details. This safeguards 

financial privacy while ensuring transac0on validity. 

2. Enhanced Regulatory Compliance: 

Homomorphic encryp0on: Enables regulatory bodies to analyse anonymized blockchain data 

for an0-money laundering (AML) and Know Your Customer (KYC) purposes without 

compromising user privacy. This fosters a balance between transparency and user 

protec0on. 

3. Confiden9al Smart Contracts: 

Secure mul0-party computa0on (MPC): Allows mul0ple par0es to execute smart contracts 

on a blockchain without revealing any private data involved in the contract's logic. This 

facilitates secure and private business transac0ons on blockchains. 

4. Decentralized Iden9ty Management: 

Self-sovereign iden0ty (SSI): Empowers users to control their digital iden00es on 

blockchains. Users can choose what informa0on to share with different en00es, promo0ng 

user control over personal data. 
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5. Secure Cryptographic Wallets: 

Homomorphic encryp0on: Allows users to perform basic opera0ons (e.g., balance checks) 

on their cryptocurrency holdings within the wallet without decryp0ng the en0re private key. 

This enhances security by minimizing exposure of sensi0ve cryptographic informa0on. 

6. Secure DeFi (Decentralized Finance) Applica9ons: 

Zero-knowledge proofs: Users can prove their eligibility for DeFi services (e.g., loans) without 

revealing their en0re financial data. This fosters broader par0cipa0on in DeFi while 

safeguarding user privacy. 

7. Privacy-Preserving Analy9cs: 

Federated learning: Allows different par0es to collabora0vely train machine learning models 

on their private datasets without sharing the underlying data itself. This enables valuable 

data analysis for fraud detec0on or market insights while protec0ng user privacy. 

8. Secure Data Sharing for Regulatory Repor9ng: 

MPC: Financial ins0tu0ons can share sensi0ve data required for regulatory repor0ng with 

auditors or regulators in a privacy-preserving manner. This ensures compliance while 

safeguarding sensi0ve financial informa0on. 

Overall, privacy-preserving technologies play a crucial role in the future of digital assets. By 

enabling secure transac0ons, fostering regulatory compliance, and empowering user control 

over data, these technologies pave the way for a more secure, transparent, and user-centric 

digital asset ecosystem. 
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Digital Sovereignty and Privacy Preserving 

Technologies  

Privacy-preserving secure data sharing plays a cri0cal role in achieving Digital Sovereignty for 

several reasons: 

1. Enables Data Sharing While Maintaining Control: 

Data as a Na0onal Asset: In the digital age, data is a valuable na0onal asset. Digital 

Sovereignty emphasizes a na0on's control over its data. Privacy-preserving techniques allow 

data sharing for specific purposes (e.g., research, public policy) without compromising the 

privacy of individuals or revealing sensi0ve informa0on. 

Collabora0on without Compromising Privacy: Countries can collaborate on projects that 

require data sharing, such as scien0fic research or public health ini0a0ves, while ensuring 

individual privacy is protected. This fosters interna0onal coopera0on without sacrificing data 

control. 

2. Strengthens Data Security and Trust: 

Reduced Risk of Data Breaches: Privacy-preserving techniques like homomorphic encryp0on 

or secure mul0-party computa0on keep data encrypted even during analysis. This minimizes 

the risk of data breaches and unauthorized access, protec0ng sensi0ve informa0on. 

Increased Public Trust: By demonstra0ng a commitment to data privacy through secure 

sharing methods, governments can build trust with ci0zens. This is essen0al for encouraging 

data sharing and par0cipa0on in digital ini0a0ves. 

3. Supports Data-Driven Decision Making: 

Access to Diverse Data Sets: Privacy-preserving techniques allow access to data sets from 

various sources while protec0ng individual privacy. This enables governments to make 

informed decisions based on a wider range of data, leading to more effec0ve policies. 
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Empowers Individuals: Individuals can choose to share their data for specific purposes with 

the assurance of privacy protec0on. This empowers ci0zens to contribute to data-driven 

decision making without compromising their own privacy. 

4. Fosters Innova9on in Secure Data Ecosystems: 

Development of New Technologies: The need for secure data sharing drives innova0on in 

privacy-preserving techniques. This fosters the development of new technologies that can 

be beneficial for various sectors beyond government, like healthcare and finance. 

Creates a Secure Digital Infrastructure: By promo0ng secure data sharing prac0ces, 

governments can contribute to building a more secure digital infrastructure. This benefits all 

stakeholders within the digital ecosystem. 

Overall, privacy-preserving secure data sharing is a crucial element of Digital Sovereignty. It 

empowers na0ons to control their data, collaborate securely, and leverage data for the 

benefit of their ci0zens while ensuring individual privacy remains a top priority. 
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The Role of Hardware Security Modules (HSMs) 

Hardware security modules (HSMs) and privacy-preserving techniques (PPTs) e.g. 

homomorphic encryp0on, mul0-party computa0on (MPC), federated learning, confiden0al 

compu0ng, and differen0al privacy offer complementary func0onali0es for a secure privacy-

preserving data sharing plajorm. Here's how they can work together: 

Hardware Security Modules (HSMs): 

• Key Management and Secure Execution: HSMs provide a secure environment for storing 

and managing cryptographic keys used by PPTs as part of a Key Management Service 

(KMS). These keys are essential for encryption and decryption operations within PPTs. 

• Tamper Evident and Secure Processing: HSMs are tamper-evident devices, meaning any 

attempt to tamper with them will be detected. This adds an extra layer of security to the 

platform, ensuring the integrity of the data and the computations performed on it. 

• Offloading Processing: Some PPTs, particularly homomorphic encryption, can be 

computationally expensive. HSMs can offload these heavy computations from the main 

platform, improving performance and scalability. 

Synergy: Privacy-Preserving Techniques (PPTs) and HSM 

  

••

•
Homomorphic 

Encryption
Multi-party 

Computation

Confidential 
Computing

Federated 
Learning

Allows computa.ons 
on encrypted data 
without decryp.on 

HSM 
• Securely generates & 

stores encryption keys 
• Interoperates with a key 

lifecycle management 
system (KMS) 
 

 

Enables mul.ple par.es to 
jointly compute a func.on 

on their private data 
without revealing  

their individual  
inputs 

  

Trains machine  
learning models  
on distributed  
data sets stored  
on individual devices  
or servers without  
transferring the raw data itself 

Provides a  
trusted execu.on 

environment  
(TEE) within  

a processor. Data remains 
encrypted even during 

processing within the TEE 
  

HSM 
• Quantum-safe crypto agility 
• FIPS validated 
• PPT ecosystem connectivity 
• Flexible hybrid deployments 

Fig. 6 HSM support of PPTs. Example show is HSM manufactured by Thales  

HSM + KMS 
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Differen0al Privacy: Adds controlled noise to data to protect individual privacy while 

allowing for sta0s0cal analysis. HSMs are not directly involved in differen0al privacy 

By combining HSMs with PPTs, the plajorm can achieve a high level of security and privacy 

for data sharing: 

• HSMs provide a secure foundation: Safeguarding cryptographic keys and perform secure 

computations, ensuring the data integrity and confidentiality throughout the platform. 

• PPTs offer specific privacy guarantees: Each PPT caters to different privacy needs. 

Choosing the right combination of PPTs based on the specific use case ensures data 

remains private while allowing for collaborative analysis and insights. 

HSMs, PPTs and Easing Regulatory Compliance 
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Enhanced by HSM ability to offer a tamper-resistant environment for cryptographic opera.ons, ensuring the confiden.ality 
and integrity of sensi.ve data, which is a founda.onal requirement across numerous regulatory frameworks. PPTs like 
encryp.on and tokeniza.on render data unreadable without proper authoriza.on, fulfilling data protec.on mandates in 
regula.ons like GDPR, CCPA, and HIPAA. 

HSMs, within a Key Management System (KMS), provide a secure repository for genera.ng, storing, and 
managing cryptographic keys used for encryp.on, digital signatures, and other security protocols. This 
addresses key management requirements s.pulated in regula.ons like PCI DSS and FIPS 140-2.    

PPTs that anonymise data allow organiza.ons to share data for analysis while minimizing the risk of 
individual iden.fica.on, aiding compliance with data minimiza.on principles in GDPR and other 
regula.ons. HSMs can enforce granular access controls, ensuring only authorized personnel or applica.ons 
can access specific data and keys, aligning with least privilege principles in various security frameworks.   
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HSMs generate detailed audit logs of cryptographic opera.ons, providing evidence of compliance with 
regulatory requirements for data handling and security. PPTs can support transparent data processing and 
analysis, facilita.ng compliance repor.ng into CISO dashboards and demonstra.ng responsible data usage. 

HSMs (Hardware Security Modules) and Privacy Preserving Technologies 
(PPTs) work in tandem to streamline regulatory compliance                                                                                                                                                        
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Healthcare: Encryp.on enforced by HSMs protects 

pa.ent health informa.on (PHI) as required by HIPAA. 

De-iden.fica.on and anonymiza.on techniques 

facilitate research while adhering to privacy regula.ons.   

Regulatory Compliance Examples 

Government and Defence: HSMs safeguard classified 

informa.on, aligning with stringent government and 

defence security standards. Securing communica.on 

channels in the face of quantum computer-based aIacks 

Secure Key Management:  

   

The Securi>es and Futures Commission conclusions on virtual asset trading plaGorms 2023-05 

Hardware Security Modules (HSMs) play a crucial role in maintaining the security and 

integrity of cryptographic opera0ons, par0cularly in the financial and regulatory contexts 

referenced in the SFC (Securi0es and Futures Commission) consulta0on conclusion 

document. In the context of this consulta0on, which discusses enhancing security 

frameworks within financial ins0tu0ons, HSMs are vital for several reasons: 

 

 

 

 

 

 

 

SFC Conclusion: By integra0ng HSMs within their infrastructure, financial ins0tu0ons can 

enhance data security, meet regulatory requirements, and support privacy-preserving 

technologies; cri0cal elements discussed in the SFC consulta0on conclusion document. 

 

 

Financial Services: HSMs protect sensi0ve financial data and transac0on keys, enabling 

compliance with PCI DSS requirements. Tokeniza0on helps safeguard cardholder data, further 

reducing compliance scope. Here is an overview of a sample global regulatory compliance 

considera0ons 

  

Secure Key Management 

 

   

HSMs ensure that cryptographic keys are not exposed or tampered with, even in a highly 
regulated environment 

  C Encryp$on and Decryp$on 
Opera$ons 

   Regulatory Compliance 

   
Privacy-Preserving 
Technologies Integra$on 

   
Digital Signatures and 
Authen$ca$on 
   

Secure Key Management 

 

   

HSMs perform encryp.on and decryp.on opera.ons directly within the secure hardware, 
minimizing the risk of data leakage or unauthorized access 

HSMs are ocen mandatory, e.g. in GDPR, DORA, PDCI DSS, because they provide a cer.fied level 
of security 

Integra.on with, for example, homomorphic encryp.on, or secure Mul.-Party Computa.on as 
discussed earlier, enables specific new use cases and business value. In many cases can lead to 
the crea.on of new innova.ve digital financial products 

HSMs are also used for genera.ng and verifying digital signatures, which are crucial for ensuring 
the authen.city and integrity of transac.ons. This supports the secure and compliant opera.ons 
required in financial regula.ons. In the context of privacy-preserving technologies, HSMs can 
securely handle the signing processes, ensuring that data remains tamper-proof and authen.c 

HSMs ensure that cryptographic keys are not exposed or tampered with, even in a highly 
regulated environment 

  C 
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Hong Kong Monetary Authority (HKMA) Provision of Custodial Services 2024-02-20 

The Hong Kong Monetary Authority (HKMA) outlines the regulatory requirements and 

guidelines for managing risks associated with technology in the financial sector. Within 

this context, Hardware Security Modules (HSMs) are essen0al tools for ensuring secure 

cryptographic opera0ons, which are cri0cal for protec0ng sensi0ve financial data and 

maintaining compliance with regulatory standards. 

 

 

 

 

 

 

 

 

 

HKMA Conclusion: In summary, HSMs are integral to mee0ng the HKMA’s regulatory 

requirements for secure cryptographic opera0ons and data protec0on. They also facilitate 

the implementa0on of privacy-preserving technologies by ensuring that cryptographic 

keys and opera0ons are securely managed, thus protec0ng sensi0ve data in compliance 

with regulatory standards. 

 

 

 

   

Secure Cryptographic 
Opera$ons 

   

HSM tamper-resistant hardware, provide a secure environment for performing cryptographic 
opera.ons such as encryp.on, decryp.on, key management, and digital signatures. These 
opera.ons are crucial for safeguarding sensi.ve data from unauthorized access, and breach 
resistance, especially in financial transac.ons 

Regulatory Compliance  

Support for Privacy-
Preserving Technologies 

   

Linking HSMs to Privacy-
Preserving Technologies   

The use of HSMs supports compliance with data protec.on regula.ons, such as the Personal 
Data (Privacy) Ordinance (PDPO) in Hong Kong. These regula.ons require organiza.ons to 
implement strong measures to protect personal data. HSMs ensure that the cryptographic 
processes involved in these measures are secure 

HSMs also support the implementa.on of strong authen.ca.on mechanisms, which are cri.cal 
for mee.ng the HKMA’s requirements for iden.ty verifica.on and access control 

Privacy-preserving technologies, such as homomorphic encryp.on and zero-knowledge proofs, 
require robust key management and secure cryptographic opera.ons to func.on effec.vely. 
HSMs provide the necessary secure environment for genera.ng, storing, and using 
cryptographic keys in these privacy-preserving techniques 

By integra.ng HSMs with privacy-preserving technologies, financial ins.tu.ons can ensure that 
sensi.ve data is protected not only at rest but also during processing and transmission 

Encryp.on and Data Masking: HSMs play a cri.cal role in encryp.on and data masking, which 
are founda.onal to privacy-preserving technologies. These technologies allow financial 
ins.tu.ons to process data without exposing it, thus protec.ng customer privacy even during 
analy.cs or sharing of informa.on 
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Hong Kong Monetary Authority (HKMA) DLT Risk management 2024-04-16 

In the context of the Hong Kong Monetary Authority’s (HKMA) guidelines on Distributed 

Ledger Technology (DLT) Risk Management dated April 16, 2024, Hardware Security 

Modules (HSMs) are cri0cal for ensuring the security and integrity of cryptographic 

opera0ons that underpin DLT systems. Here’s how HSMs are used and their connec0on to 

privacy-preserving technologies: 

 

 

 

 

 

 

 

 

 

 

 

 

 

HKMA DLT Conclusion: HSMs are integral to secure cryptographic opera0ons. They secure 

the implementa0on of DLT systems in accordance with the HKMA’s DLT Risk Management 

guidelines, ensuring the integrity, confiden0ality, and authen0city of transac0ons on the 

ledger. Addi0onally, HSMs enable the secure use of privacy-preserving technologies within 

DLT, allowing financial ins0tu0ons to protect sensi0ve data while complying with 

regulatory requirements.   

Secure Key Management in 
DLT Systems   

HSMs provide a secure environment for managing cryptographic keys that are essen.al in DLT 
systems. In DLT, cryptographic keys are used for signing transac.ons, valida.ng blocks, and 
managing access to the ledger. The HKMA guidelines emphasize the importance of securing 
these keys to prevent unauthorized access or tampering, which could compromise the en.re 
DLT system 

HSMs ensure that private keys used for signing transac.ons are securely stored and processed, 
reducing the risk of key thec or misuse, which is a cri.cal concern in DLT-based financial services 

Transac$on Integrity and 
Authen$ca$on: 

Regulatory Compliance and 
Risk Mi$ga$on:   

Linking HSMs to Privacy-
Preserving Technologies in 
DLT  

HSMs are used to ensure the integrity and authen.city of transac.ons within a DLT network. By 
securely managing the cryptographic processes involved in transac.on signing and verifica.on, 
HSMs help maintain the trustworthiness of the DLT ledger, as mandated by the HKMA. 
Preven.on of fraudulent transac.ons depends on this, and ensures that all ac.ons on the ledger 
are traceable and legi.mate 

The HKMA’s DLT Risk Management guidelines highlight the need for financial ins.tu.ons to 
adhere to strict security standards and mi.gate risks associated with the use of DLT. HSMs help 
meet these requirements by providing a high level of security for cryptographic opera.ons, 
which is necessary for regulatory compliance. HSMs also facilitate the implementa.on of secure 
access controls, which are essen.al for protec.ng sensi.ve data and ensuring that only 
authorized par.es can interact with the DLT system 

Privacy Preserving Transac$ons 
Privacy-preserving technologies in DLT, such as zero-knowledge proofs (ZKPs) and confiden.al 
transac.ons, rely on secure cryptographic opera.ons to protect the privacy of par.cipants and 
transac.on data. For example, in ZKPs, HSMs can securely generate and manage the 
cryptographic proofs that allow par.cipants to verify the validity of a transac.on without 
revealing sensi.ve details 
 
Confiden$al Data Sharing 
In DLT systems, privacy-preserving technologies ocen involve sharing confiden.al data across 
mul.ple par.es while keeping it encrypted and secure. HSMs ensure separa.on of duty with 
encryp.on keys used in these processes securely managed, preven.ng unauthorized access to 
data. This is par.cularly important in financial services, where maintaining the confiden.ality of 
transac.on data is cri.cal for regulatory compliance and protec.ng customer privacy. 
 
Support for Advanced Cryptographic Techniques 
Homomorphic encryp.on is one such technique that allows computa.ons to be performed on 
encrypted data. In the context of DLT, this can enable privacy-preserving analy.cs and data 
processing while ensuring that sensi.ve informa.on remains protected. 
By securely managing the cryptographic keys and processes involved in these techniques, HSMs 
enable financial ins.tu.ons to leverage privacy-preserving technologies in a secure and compliant 
manner 
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The Securi7es and Exchange Commission (SEC) 

The Securi0es and Exchange Commission (SEC) has increasingly focused on the role of 

technology and risk management in ensuring robust regulatory compliance within the 

financial industry. In this context, Hardware Security Modules (HSMs) and Privacy-

Preserving Technologies (PPTs) are seen as cri0cal components that can help ins0tu0ons 

meet stringent security and privacy requirements.  

HSMs in SEC Guidelines: 

 

 

 

Privacy-Preserving Technologies in SEC Guidelines: 

 

 

 

 

 

 

 

 

 

SEC Conclusion: The SEC’s guidelines foresee the use of HSMs and Privacy-Preserving 

Technologies as essen0al tools in ensuring that financial ins0tu0ons can securely manage 

data, protect customer privacy, and maintain compliance with regulatory requirements. 

These technologies provide the necessary infrastructure to safeguard data and automate 

compliance processes, thereby easing the regulatory burden on financial ins0tu0ons. 

Secure Cryptographic 
Opera$ons   

The SEC emphasizes the importance of protec.ng sensi.ve financial data and ensuring the 
integrity of transac.ons. HSMs are essen.al for securely managing cryptographic keys, which 
are used for encryp.on, decryp.on, digital signatures, and other cryptographic func.ons that 
are cri.cal for safeguarding data. By securely storing and processing these keys, HSMs help 
financial ins.tu.ons comply with SEC regula.ons that require the protec.on of customer data 
and the integrity of financial transac.ons 

Enhanced Authen$ca$on 
and Access Control: 

Data Privacy and Protec$on 

Compliance with Data 
Protec$on Regula$ons 

SEC guidelines ocen require robust authen.ca.on and access control mechanisms to prevent 
unauthorized access to sensi.ve systems and data. HSMs support the security infrastructure 
needed to implement these controls. This helps in mi.ga.ng risks associated with insider 
threats or cyberaIacks 

Privacy-preserving technologies such as homomorphic encryp.on, secure mul.-party 
computa.on, and zero-knowledge proofs enable financial ins.tu.ons to process and share data 
without exposing sensi.ve informa.on. The SEC recognizes the importance of these 
technologies in maintaining data privacy, say for GDPR or CCPA, while allowing for necessary 
data analysis and compliance repor.ng. By adop.ng PPTs, ins.tu.ons can ensure that they 
comply with privacy regula.ons, while s.ll fulfilling their obliga.ons to report data to regulators  

The SEC’s guidelines ocen intersect with other regulatory frameworks that priori.ze data privacy. 
By integra.ng PPTs into their opera.ons, financial ins.tu.ons can more easily comply with 
mul.ple regulatory requirements, including those that mandate data minimiza.on and secure 
data handling prac.ces.  
 
PPTs allow ins.tu.ons to provide the necessary transparency and repor.ng to regulators without 
compromising the privacy of their customers, thus easing the burden of regulatory compliance. 

Easing SEC Regulatory 
Compliance 

Automa$on and Integra$on: 
The SEC encourages the use of technology to automate and streamline compliance processes. 
HSMs and PPTs can be integrated into compliance workflows to automa.cally enforce data 
protec.on and security measures, reducing the likelihood of human error and ensuring consistent 
compliance with regula.ons. For example, HSMs, together with a centralised key management 
system can automate the encryp.on of data at rest and in transit, while PPTs can automate the 
secure sharing of data with regulators, making the compliance process more efficient and less 
prone to breaches. 
 
Auditability and Transparency: 
Both HSMs and PPTs enhance the auditability of financial opera.ons. HSMs ensure that all 
cryptographic opera.ons are logged and can be audited, providing clear evidence of compliance 
with SEC requirements. PPTs, on the other hand, ensure that data privacy is maintained 
throughout the audit process, allowing ins.tu.ons to demonstrate compliance without exposing 
sensi.ve informa.on. This dual focus on security and privacy helps ins.tu.ons navigate complex 
regulatory environments and reduces the risk of non-compliance penal.es. 
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Conclusion 

The combina0on of HSMs and PPTs offers a robust framework for addressing the diverse and 

oZen overlapping requirements of global regulatory bodies. By ensuring data security, 

secure key management, privacy protec0on, and auditable compliance, organiza0ons can 

navigate the complexi0es of the regulatory landscape more effec0vely and efficiently. This 

not only reduces the risk of non-compliance penal0es but also builds trust with customers 

and stakeholders, demonstra0ng a commitment to responsible data handling and ethical AI 

prac0ces.  
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